1.
Pascarella G, Strumia A, Piliego C, et al. COVID-19 diagnosisand management: a comprehensive review. J Intern Med.2020;288(2):192-206.
2.
Qiu P, Zhou Y, Wang F, et al. Clinical characteristics, laboratoryoutcome characteristics, comorbidities, and complications ofrelated COVID-19 deceased: a systematic review and meta-analysis. Aging Clin Exp Res. 2020;32(9):1869-1878.
3.
Li J, Huang DQ, Zou B, et al. Epidemiology of COVID-19: asystematic review and meta-analysis of clinical characteristics,risk factors, and outcomes. J Med Virol. 2021;93(3):1449-1458.
4.
Wang J, Zhao H, An Y. ACE2 shedding and the role in COVID-19.Front Cell Infect Microbiol. 2022;11:789180.
5.
Gheblawi M, Wang K, Viveiros A, et al. Angiotensin-convertingenzyme 2: SARS-CoV-2 receptor and regulator of the renin-angiotensin system: celebrating the 20th anniversary of thediscovery of ACE2. Circ Res. 2020;126(10):1456-474.
6.
Xu H, Zhong L, Deng J, et al. High expression of ACE2 receptorof 2019-nCoV on the epithelial cells of oral mucosa. Int J Oral Sci.2020;12(8):1-5.
7.
Almehdi AM, Khoder G, Alchakee AS, Alsayyid AT, Sarg NH,Soliman SSM. SARS-CoV-2 spike protein: pathogenesis, vaccines,and potential therapies. Infection. 2021;49(5):855-876.
8.
Mousavizadeh L, Ghasemi S. Genotype and phenotype ofCOVID-19: Their roles in pathogenesis. J Microbiol ImmunolInfect. 2021;54(2):159-163.
9.
Bayati A, Kumar R, Francis V, McPherson PS. SARS-CoV-2infects cells after viral entry via clathrin-mediated endocytosis. JBiol Chem. 2021;296:100306.
10.
Zhang J, Xiao T, Cai Y, Chen B. Structure of SARS-CoV-2 spikeprotein. Curr Opin Virol. 2021;50:173-182.
11.
Watanabe Y, Allen JD, Wrapp D, McLellan JS, Crispin M. Site-specific glycan analysis of the SARS-CoV-2 spike. Science.2020;369:330-333.
12.
Verdecchia P, Cavallini C, Spanevello A, Angeli F. The pivotal linkbetween ACE2 deficiency and SARS-CoV-2 infection. Eur J InternMed. 2020;76:14-20.
13.
Xiao L, Sakagami H, Miwa N. ACE2: the key molecule forunderstanding the pathophysiology of severe and criticalconditions of COVID-19: demon or angel? Viruses. 2020;12(5):491.
14.
Cheng H, Wang Y, Wang GQ. Organ-protective effect ofangiotensin-converting enzyme 2 and its effect on the prognosisof COVID-19. J Med Virol. 2020;92(7):726-730.
15.
Rice GI, Jones AL, Grant PJ, Carter AM, Turner AJ, HooperNM. Circulating activities of angiotensin-converting enzyme, itshomolog, angiotensin-converting enzyme 2, and neprilysin in afamily study. Hypertension. 2006;48(5):914-920.
16.
British Society of Thoracic Imaging. Thoracic Imaging inCOVID-19 Infection. Guidance for the Reporting Radiologist.Ver sion 2. 16th March 2020. UK: BSTI. Avaliable at: https://www.bsti.org.uk/media/resources/files/BSTI_COVID-19_Radiology_Guidance_versio.
17.
Karthika T, Joseph J, Akshay Das VR, et al. SARS-CoV-2 cellularentry is independent of the ACE2 cytoplasmic domain signaling.Cells. 2021;10(7):1814.
18.
Yeung ML, Teng JLL, Jia L, et al. Soluble ACE2-mediated cellentry of SARS-CoV-2 via interaction with proteins related to therenin-angiotensin system. Cell. 2021;184:2212-2228.e12.
19.
Monteil V, Kwon H, Prado P, et al. Inhibition of SARS-CoV-2infections in engineered human tissues using clinical-gradesoluble human ACE2. Cell. 2020;181(4):905-913.e7.
20.
Zheng YY, Ma YT, Zhang JY, Xie X. COVID-19 and thecardiovascular system. Nat Rev Cardiol. 2020;17(5):259-260.
21.
Mohammadi P, Varpaei HA, Seifi A, et al. Soluble ACE2 as a riskor prognostic factor in COVID-19 patients: a cross-sectionalstudy. Med J Islam Repub Iran. 2022;36:135.
22.
Robertson J, Nellgård B, Hultén LM, et al. Sex difference incirculating soluble form of ACE2 protein in moderate and severeCOVID-19 and healthy controls. Front Med. 2022;9:1058120.
23.
Avanoglu Guler A, Tombul N, Aysert Yıldız P, et al. The assessmentof serum ACE activity in COVID-19 and its association withclinical features and severity of the disease. Scand J Clin LabInvest. 2021;81(2):160-165.