JHSM

Journal of Health Sciences and Medicine (JHSM) is an unbiased, peer-reviewed, and open access international medical journal. The Journal publishes interesting clinical and experimental research conducted in all fields of medicine, interesting case reports, and clinical images, invited reviews, editorials, letters, comments, and related knowledge.

EndNote Style
Index
Original Article
Morphometric, immunohistochemical and ultrastructural examination of age-related structural alterations in the optic nerve
Aims: As individuals age, there is a known decline in visual function attributed to a reduction in the optic nerve fibers and myelin sheath degeneration. Studies present conflicting findings on whether aging affects axonal integrity in the human optic nerve. This study aims to investigate degenerative changes in the aging rat optic nerve.
Methods: The investigation involved 36 Wistar albino rats. The rats were divided into six groups: the newborn, prepubertal, pubertal, junior, adult, and elderly groups. This study investigated optic nerve axon counts, axon diameters, levels of glial fibrillary acidic protein immunoreactivity (GFAP-IR) and nerve growth factor immunoreactivity (NGF-IR), as well as findings from light microscopy (LM) and electron microscopy (EM) in these groups.
Results: This study observed age-related alterations in rat optic nerves, including increased diameter, irregular axon count fluctuations (both increases and decreases), elevated astrocyte count, and a simultaneous decline in oligodendrocyte count. Additionally, it was observed that NGF-IR was predominantly at the membrane level in newborns and moderately in the cytoplasm, whereas in older ages, it was evident at both cellular and axonal levels furthermore, it was observed that GFAP-IR increased with age. However, in LM and EM examinations, axonal loss and rarefaction, accumulation of osmiophilic substances, splitting of the myelin sheath, vacuolization, axonal retraction were observed.
Conclusion: In this study, it was found that one of the causes of age-related vision loss is the advanced degenerative changes in the optic nerve and it was concluded that the remaining small-diameter myelinated nerve fibers may partially compensate for the sense of vision. Our study reveals that age-related degenerative changes in the central nervous system resemble those in multiple sclerosis (MS), suggesting a potential contribution to MS pathogenesis.


1. De Moraes CG. Anatomy of the visual pathways. <em>J Glaucoma</em>. 2013;(22)5:2-7. doi: 10.1097/IJG.0b013e3182934978
2. Shao Y, Li L, Peng W, Lu W, Wang Y. Age-related changes in the healthy adult visual pathway: evidence from diffusion tensor imaging with fixel-based analysis. <em>Radiologie (Heidelb).</em> 2023;63(2):73-81. doi: 10.1007/s00117-023-01192-x
3. Trinh M, Kalloniatis M, Alonso-Caneiro D, Nivison-Smith L. High-density optical coherence tomography analysis provides insights into early/intermediate age-related macular degeneration retinal layer changes. <em>Invest Ophthalmol Vis Sci.</em> 2022;63(5):36. doi: 10.1167/iovs.63.5.36
4. Balazsi AG, Rootman J, Drance SM, Schulzer M, Douglas GR. The effect of age on the nerve fiber population of the human optic nerve. <em>Am J Ophthalmol.</em> 1984;97(6):760-766. doi: 10.1016/0002-9394(84)90509-9
5. Vrabec F. Age changes of the human optic nerve head. A neurohistologic study. <em>Albrecht Von Graefes Arch Klin Exp Ophthalmol.</em> 1977;202(3):231-236. doi: 10.1007/BF00407873
6. Dolman CL, McCormick AQ, Drance SM. Aging of the optic nerve. <em>Arch Ophthalmol.</em> 1980;98(11):2053-2058. doi: 10.1001/archopht.1980.01020040905024
7. Repka MX, Quigley HA. The effect of age on normal human optic nerve fiber number and diameter.<em> Ophthalmology.</em> 1989;96(1):26-32. doi: 10.1016/s0161-6420(89)32928-9
8. Cavallotti C, Cavallotti D, Pescosolido N, Pacella E. Age-related changes in rat optic nerve: morphological studies. <em>Anat Histol Embryol.</em> 2003;32(1):12-16. doi: 10.1046/j.1439-0264.2003.00431.x
9. El-Sayyad HI, Khalifa SA, El-Sayyad FI, Al-Gebaly AS, El-Mansy AA, Mohammed EA. Aging-related changes of optic nerve of Wistar albino rats. <em>Age (Dordr).</em> 2014;36(2):519-532. doi: 10.1007/s11357-013-9580-5
10. Godlewski A. Morphometry of myelin fibers in corpus callosum and optic nerve of aging rats. <em>J Hirnforsch.</em> 1991;32(1):39-46.
11. Sandell JH, Peters A. Effects of age on the glial cells in the rhesus monkey optic nerve. <em>J Comp Neurol.</em> 2002;445(1):13-28. doi: 10.1002/cne.10162
12. Cavallotti C, Pacella E, Pescosolido N, Tranquilli-Leali FM, Feher J. Age-related changes in the human optic nerve. <em>Can J Ophthalmol.</em> 2002;37(7):389-394. doi: 10.1016/s0008-4182(02)80040-0
13. Yew DT. Aging in retinas and optic nerves of 2.5- to 9-month-old mice. <em>Acta Anat (Basel).</em> 1979;104(3):332-334. doi: 10.1159/000145079
14. Sing NM, Anderson SF, Townsend JC. The normal optic nerve head. <em>Optom Vis Sci.</em> 2000;77(6):293-301. doi: 10.1097/00006324-200006000-00009
15. Trapp BD, Nave KA. Multiple Sclerosis: an immune or neurodegenerative disorder? <em>Annual Rev Neurosci.</em> 2008;31:247-269. doi: 10.1146/annurev.neuro.30.051606.094313
16. Ricci A, Bronzetti E, Amenta F. Effect of ageing on the nerve fibre population of rat optic nerve. <em>Gerontology.</em> 1988;34(5-6): 231-235. doi: 10.1159/000212960
17. Fox JG, Cohen BJ, Loew FM. Laboratory animal medicine. USA Academic Pres. 1984:95.
18. Hirsch FR, Varella-Garcia M, Bunn PA Jr, et al. Epidermal growth factor receptor in non-small-cell lung carcinomas: correlation between gene copy number and protein expression and impact on prognosis. <em>J Clin Oncol.</em> 2003;21(20):3798-3807. doi: 10.1200/JCO.2003.11.069
19. Kiyosawa I. Age-related changes in visual function and visual organs of rats. <em>Exp Anim.</em> 1996;45(2):103-114. doi: 10.1538/expanim.45.103
20. Sturrock RR. Changes in the number of axons in the human embryonic optic nerve from 8 to 18 weeks gestation. <em>J Hirnforsch.</em> 1987;28(6):649-652.
21. Butt AM, Kirvell S. Glial cells in transected optic nerves of immature rats. II. an immunohistochemical study. <em>J Neurocytol.</em> 1996;25(6):381-392. doi: 10.1007/BF02284809
22. Attia H, Taha M, Abdellatif A. Effects of aging on the myelination of the optic nerve in rats. <em>Int J Neurosci.</em> 2019;129(4):320-324. doi: 10.1080/00207454.2018.1529670
23. Yassa HD. Age-related changes in the optic nerve of Sprague-Dawley rats: an ultrastructural and immunohistochemical study. <em>Acta Histochem.</em> 2014;116(6):1085-1095. doi: 10.1016/j.acthis. 2014.05.001
24. Lam K, Sefton AJ, Bennett MR. Loss of axons from the optic nerve of the rat during early postnatal development. <em>Brain Res.</em> 1982;255(3):487-491. doi: 10.1016/0165-3806(82)90014-1
25. Wong SL, Ip PP, Yew DT. Comparative ultrastructural study of the optic nerves and visual cortices of young (2.5 months) and old (17 months) mice. <em>Acta Anat (Basel).</em> 1979;105(4):426-430. doi: 10.1159/000145149
26. Trivi&ntilde;o A, Ram&iacute;rez JM, Salazar JJ, Ram&iacute;rez AI, Garc&iacute;a-S&aacute;nchez J. Immunohistochemical study of human optic nerve head astroglia. <em>Vision Res.</em> 1996;36(14):2015-2028. doi: 10.1016/0042-6989(95)00317-7
27. Hernandez MR, Igoe F, Neufeld AH. Extracellular matrix of the human optic nerve head. <em>Am J Ophthalmol.</em> 1986;102(2):139-148. doi: 10.1016/0002-9394(86)90134-0
28. Hernandez MR, Luo XX, Andrzejewska W, Neufeld AH. Age-related changes in the extracellular matrix of the human optic nerve head. <em>Am J Ophthalmol.</em> 1989;107(5):476-484. doi: 10.1016/0002-9394(89)90491-1
29. Cepurna WO, Kayton RJ, Johnson EC, Morrison JC. Age related optic nerve axonal loss in adult Brown Norway rats. <em>Exp Eye Res.</em> 2005;80(6):877-884. doi: 10.1016/j.exer.2004.12.021
30. Gabilondo I, Mart&iacute;nez-Lapiscina EH, Martinez-Heras E, et al. Trans-synaptic axonal degeneration in the visual pathway in multiple sclerosis. <em>Ann Neurol.</em> 2014;75(1):98-107. doi: 10.1002/ana.24030
31. Tur C, Goodkin O, Altmann DR, et al. Longitudinal evidence for anterograde trans-synaptic degeneration after optic neuritis. <em>Brain.</em> 2016;139(3):816-828. doi: 10.1093/brain/awv396
32. Compston A, Coles A. Multiplesclerosis. <em>Lancet.</em> 2008;372(9648): 1502-1517. doi: 10.1016/S0140-6736(08)61620-7
33. Lucchinetti C, Br&uuml;ck W, Parisi J, Scheithauer B, Rodriguez M, Lassmann H. Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination. <em>Ann Neurol.</em> 2000;47(6):707-717. doi: 10.1002/1531-8249(200006)47:6&lt;707:aid-ana3&gt;3.0.co;2-q
34. Compston DAS. McAlpine&rsquo;s multiple sclerosis. 4<sup>th</sup> edn. London: Elsevier, 2005:589.
35. Skoff RP, Toland D, Nast E. Pattern of myelination and distribution of neuroglial cells along the developing optic system of the rat and rabbit. <em>J Comp Neurol.</em> 1980;191(2):237-253. doi: 10.1002/cne.901910207
Volume 7, Issue 4, 2024
Page : 416-425
_Footer