JHSM

Journal of Health Sciences and Medicine (JHSM) is an unbiased, peer-reviewed, and open access international medical journal. The Journal publishes interesting clinical and experimental research conducted in all fields of medicine, interesting case reports, and clinical images, invited reviews, editorials, letters, comments, and related knowledge.

EndNote Style
Index
Original Article
The effect of simulated food liquids on the surface structure and solubility of various esthetic restorations
Aims: The aim of this study is to investigate the surface roughness and solubility of restorative materials when exposed to foodstuffs in the oral environment using simulated food liquids as defined by the Food and Drug Administration.
Methods: In this study, a total of four esthetic restorative materials were used: one universal compomer (Dyract XP, Dentsply), one conventional microhybrid composite (FiltekTM Z250, 3M ESPE), one nanofilled, and one high-viscosity glass ionomer cement (ChemFil Rock, Dentsply). A total of 160 samples, each 8 mm in diameter and 2 mm in thickness, were prepared using molds. The initial weights of the samples were recorded in micrograms using a precision balance to determine solubility values. Initial surface roughness values were measured using an atomic force microscope device. The samples were immersed in four different simulated food liquids (ethanol, heptane, citric acid, and distilled water) for a period of 7 days. After removal from the solutions, the samples were desiccated to a constant weight, and the second set of weights was recorded. Subsequently, the second surface roughness values were measured
Results: Among the materials immersed in the simulated food solutions, ChemFil Rock exhibited the highest solubility and increase in surface roughness. Citric acid was found to be the solution that caused the highest increase in surface roughness values and solubility for this material (p<0.005). It was observed that Dyract XP was more affected by heptane solution, while Filtek Z-250 and G-aenial anterior materials were more affected by ethanol.
Conclusion: All the restorative materials used in our study were found to be affected by simulated food liquids to varying degrees in terms of surface roughness and solubility.


1. Opdam NJ, Bronkhorst EM, Loomans BA, Huysmans MC. 12-year survival of composite vs. amalgam restorations. <em>J Dent Res.</em> 2010;89(10):1063-1067. doi:10.1177/0022034510376071
2. Drummond, JL. Degradation, fatigue, and failure of resin dental composite materials. <em>J Dent Res.</em> 2008;87(8):710-719.
3. Ekren O, &Ouml;zk&ouml;m&uuml;r A, G&uuml;rb&uuml;z CC. Besin taklidi sıvıların &uuml;&ccedil; farklı ge&ccedil;ici kron materyalinin y&uuml;zey sertliğine etkisi. <em>E&Uuml; Diş Hek Fak Derg.</em> 2014;35:23-27.
4. Budavari S, O&rsquo;Neil MJ, Smith A, et al. (eds). 288 Sodium Lauryl Sulfate. Dictionary of Contact Allergens: Chemical Structures, Sources, and References. In: Kanerva&rsquo;s Occupational Dermatology. 3<sup>th</sup> ed. 2020:2357-2471.
5. O&rsquo;Neil, MJ. The merck index-an encyclopedia of chemicals, drugs, and biologicals. whitehouse station, NJ: Merck and Co. Inc. 2001;767:4342.
6. Badra VV, Faraoni JJ, Ramos RP, Palma-Dibb RG. Influence of different beverages on the microhardness and surface roughness of resin composites. <em>Oper Dent.</em> 2005;30(2):213-219.
7. Garcia FC, Wang L, D&rsquo;Alpino PH, Souza JB, Ara&uacute;jo PA, Mondelli RF. Evaluation of the roughness and mass loss of the flowable composites after simulated toothbrushing abrasion. <em>Braz Oral Res.</em> 2004;18(2):156-161. doi:10.1590/s1806-83242004000200012
8. Hunter G, Lane DM, Scrimgeour SN, McDonald PJ, Lloyd CH. Measurement of the diffusion of liquids into dental restorative resins by stray-field nuclear magnetic resonance imaging (STRAFI). <em>Dent Mater.</em> 2003;19(7):632-638. doi:10.1016/s0109-5641(03)00006-x
9. Sonkaya E, Akbiyik SY, Bakir EP, Bakir Ş. Posterior direkt restorasyonlarda nerede başarısızlık yaşıyoruz? <em>D&uuml;zce &Uuml;niv Sag Bil Enst Derg.</em> 2021;11(2):242-249.
10. Turssi CP, Hara AT, Serra MC, Rodrigues AL. Effect of storage media upon the surface micromorphology of resin-based restorative materials. <em>J Oral Rehabil.</em> 2002;29(9):864-871. doi:10.1046/j.1365-2842.2002.00926.x
11. Ferracane JL. Hygroscopic and hydrolytic effects in dental polymer networks. <em>Dent Mater.</em> 2006;22(3):211-22.
12. Toledano M, Osorio R, Osorio E, Fuentes V, Prati C, Garcia-Godoy F. Sorption and solubility of resin-based restorative dental materials. <em>J Dent.</em> 2003;31(1):43-50. doi:10.1016/s0300-5712(02)00083-0
13. Yap AU, Tan C, Chung S. Wear behavior of new composite restoratives. <em>Operative Dentis-Uni Washington. </em>2004;29:269-74.
14. Yap AU, Chew CL, Ong LF, Teoh SH. Environmental damage and occlusal contact area wear of composite restoratives. <em>J Oral Rehabil.</em> 2002;29(1):87-97. doi:10.1046/j.1365-2842.2002.00797.x
15. Yap AU, Tan SH, Wee SS, Lee CW, Lim EL, Zeng KY. Chemical degradation of composite restoratives. <em>J Oral Rehabil.</em> 2001; 28(11):1015-1021. doi:10.1046/j.1365-2842.2001.00760.x
16. Alshali RZ, Salim NA, Satterthwaite JD, Silikas N. Long-term sorption and solubility of bulk-fill and conventional resin-composites in water and artificial saliva. <em>J Dent.</em> 2015;43(12):1511-1518. doi:10.1016/j.jdent.2015.10.001
17. Ortengren U, Wellendorf H, Karlsson S, Ruyter IE. Water sorption and solubility of dental composites and identification of monomers released in an aqueous environment. <em>J Oral Rehabil.</em> 2001;28(12):1106-1115. doi:10.1046/j.1365-2842.2001.00802.x
18. Hahnel S, Henrich A, B&uuml;rgers R, Handel G, Rosentritt M. Investigation of mechanical properties of modern dental composites after artificial aging for one year. <em>Oper Dent.</em> 2010; 35(4):412-419. doi:10.2341/09-337-L
19. Gen&ccedil; G, Toz T. Rezin kompozitlerin renk stabilitesi ile ilgili bir derleme: kompozit renklenmelerinin etyolojisi, sınıflandırılması ve tedavisi. <em>Ege &Uuml;ni Diş Hek Fak Derg.</em> 2017;38(2):68-79.
20. M&uuml;nchow EA, Ferreira AC, Machado RM, Ramos TS, Rodrigues-Junior SA, Zanchi CH. Effect of acidic solutions on the surface degradation of a micro-hybrid composite resin. <em>Braz Dent J.</em> 2014;25(4):321-326. doi:10.1590/0103-6440201300058
21. &Ouml;zcan S, Şahin F&Uuml;, Uzun &Ouml;, Topuz &Ouml;. Bitirme ve parlatma işlemlerinin farklı kompozit rezinlerin y&uuml;zey &ouml;zellikleri &uuml;zerine etkileri. <em>G&Uuml; Diş Hek Fak Derg.</em> 2012;29(3),173-177.
22. Giacomelli L, Derchi G, Frustaci A, et al. Surface roughness of commercial composites after different polishing protocols: an analysis with atomic force. <em>Open Dent J.</em> 2012;6:189.
23. Senawongse P, Pongprueksa P. Surface roughness of nanofill and nanohybrid resin composites after polishing and brushing. <em>J Esthet Restor Dent.</em> 2007;19(5):265-275. doi:10.1111/j.1708-8240. 2007.00116.x
24. Kakaboura A, Fragouli M, Rahiotis C, Silikas N. Evaluation of surface characteristics of dental composites using profilometry, scanning electron, atomic force microscopy and gloss-meter. <em>J Mater Sci Mater Med.</em> 2007;18(1):155-163. doi:10.1007/s10856-006-0675-8
25. Marghalani HY. Effect of filler particles on surface roughness of experimental composite series. <em>J Appl Oral Sci.</em> 2010;18(1):59-67. doi:10.1590/s1678-77572010000100011
26. Jones CS, Billington RW, Pearson GJ. The in vivo perception of roughness of restorations. <em>Br Dent J.</em> 2004;196(1):42-31. doi:10. 1038/sj.bdj.4810881
27. Heintze SD, Forjanic M, Rousson V. Surface roughness and gloss of dental materials as a function of force and polishing time in vitro. <em>Dent Mater.</em> 2006;22(2):146-165. doi:10.1016/j.dental.2005.04.013
28. T&uuml;rk&uuml;n LS, T&uuml;rk&uuml;n M. The effect of one-step polishing system on the surface roughness of three esthetic resin composite materials. <em>Oper Dent.</em> 2004;29(2):203-211.
29. Prabhakar AR, Mahantesh T, Vishwas TD, Kabade A. Effect of surface treatment with remineralizing on the color stability and roughness of esthetic restorative materials. <em>Arch Oral Res.</em> 2009:5(1):19-27.
30. Davidson CL. Advances in glass-ionomer cements. <em>J Applied Oral Sci.</em> 2006;14(SPE):3-9.
31. Eick S, Glockmann E, Brandl B, Pfister W. Adherence of Streptococcus mutans to various restorative materials in a continuous flow system. <em>J Oral Rehabil.</em> 2004;31(3):278-285. doi:10.1046/j.0305-182X.2003.01233.x
32. Welbury RR, Shaw AJ, Murray JJ, Gordon PH, McCabe JF. Clinical evaluation of paired compomer and glass ionomer restorations in primary molars: final results after 42 months. <em>Br Dent J.</em> 2000;189(2):93-97. doi:10.1038/sj.bdj.4800693.
33. Abdallah AM, Mehesen R. Effect of food simulating solutions on surface roughness of four restorative materials. <em>Al-Azhar J Dent Sci.</em> 2022;25(1):23-29.
34. Kedici Alp C, Arslandaş Din&ccedil;t&uuml;rk B, Altınışık H. The effect of food-simulating liquids on surface features of single-shade universal composites: an in vitro study. <em>J Int Soc Prev Community Dent.</em> 2023;13(2):157-165. doi:10.4103/jispcd.JISPCD_233_22
35. Zhang L, Weir MD, Chow LC, Reynolds MA, Xu HH. Rechargeable calcium phosphate orthodontic cement with sustained ion release and re-release. <em>Sci Rep.</em> 2016;6:36476. doi:10.1038/srep36476
36. Yap AU, Lee MK, Chung SM, Tsai KT, Lim CT. Effect of food-simulating liquids on the shear punch strength of composite and polyacid-modified composite restoratives. <em>Oper Dent.</em> 2003;28(5):529-534.
37. Voltarelli FR, Santos-Daroz CB, Alves MC, Cavalcanti AN, Marchi GM. Effect of chemical degradation followed by toothbrushing on the surface roughness of restorative composites. <em>J Appl Oral Sci.</em> 2010;18(6):585-590. doi:10.1590/s1678-77572010000600009
38. Eweis AH, Yap AU, Yahya NA. Impact of dietary solvents on flexural properties of bulk-fill composites. <em>Saudi Dent J.</em> 2018;30(3):232-239. doi:10.1016/j.sdentj.2018.04.002
Volume 7, Issue 4, 2024
Page : 436-443
_Footer