JHSM

Journal of Health Sciences and Medicine (JHSM) is an unbiased, peer-reviewed, and open access international medical journal. The Journal publishes interesting clinical and experimental research conducted in all fields of medicine, interesting case reports, and clinical images, invited reviews, editorials, letters, comments, and related knowledge.

EndNote Style
Index
Review
Assessment tools for evaluating body structure-function and activity in dyskinetic cerebral palsy: a systematic review of instrumented assessments according to ICF-CY
Dyskinetic cerebral palsy (CP) is one of the most severe forms of CP, characterized by dystonia or choreoathetosis and can be classified into dystonic and choreoathetosis subgroups. The International Classification of Functioning, Disability, and Health-Child and Youth Version (ICF-CY) provides a framework for physical therapists to understand the health, functioning, activity, participation, and impact of dystonia and choreoathetosis. This review aimed to examine the clinical use of ICF-CY tools to assess body structure, function, and activity in children with dyskinetic CP. A systematic search was conducted in June 2024 using PubMed, Embase, Scopus, and Google Scholar databases. The search included terms related to cerebral palsy, dyskinesia, choreoathetosis, dystonia, body structure, function, and activity. After removing duplicates, 11,800 articles remained and 34 met the inclusion criteria. The review found that ICF-CY activity assessments focused primarily on fine-motor, communication, eating-drinking, bimanual fine motor, and speech functions following gross motor function. Some studies have evaluated ICF-CY body structure and function. Most studies used the Dyskinesia Impairment Scale. This review presents evaluations using instrumented assessments as objective outcome measures in patients with dyskinetic CP. Future studies should develop measurements that are applicable outside the laboratory by using new technologies.


1. Himmelmann K, Hagberg G, Wiklund L, Eek MN, Uvebrant P. Dyskinetic cerebral palsy: a population-based study of children born between 1991 and 1998. Dev Med Child Neurol. 2007;49(4):246-251. doi: 10.1111/j.1469-8749.2007.00246.x
2. Himmelmann K, McManus V, Hagberg G, Uvebrant P, Krageloh-Mann I, Cans C. Dyskinetic cerebral palsy in Europe: trends in prevalence and severity. Arch Dis Childhood. 2009;94(12):921-926. doi:10.1136/adc. 2008.144014
3. Platt MJ, Krageloh-Mann I, Cans C. Surveillance of cerebral palsy in Europe: reference and training manual. Med Edu. 2009;43(5):495-496. doi:10.1111/j.1365-2923.2009.03351.x
4. Monbaliu E, De Cock P, Ortibus E, Heyrman L, Klingels K, Feys H. Clinical patterns of dystonia and choreoathetosis in participants with dyskinetic cerebral palsy. Dev Med Child Neurol. 2016;58(2):138-144. doi:10.1111/dmcn.12846
5. Sanger TD, Chen D, Fehlings DL, et al. Definition and classification of hyperkinetic movements in childhood. Mov Disord. 2010;25(11):1538-1549. doi:10.1002/mds.23088
6. Christine C, Dolk H, Platt MJ, et al. Recommendations from the SCPE collaborative group for defining and classifying cerebral palsy. Dev Med Child Neurol Suppl. 2007;109:35-38. doi:10.1111/j.1469-8749.2007.tb12626.x
7. Monbaliu E, Ortibus E, De Cat J, et al. The Dyskinesia Impairment Scale: a new instrument to measure dystonia and choreoathetosis in dyskinetic cerebral palsy. Dev Med Child Neurol. 2012;54(3):278-283. doi:10.1111/j.1469-8749.2011.04209.x
8. Stewart K, Harvey A, Johnston LM. A systematic review of scales to measure dystonia and choreoathetosis in children with dyskinetic cerebral palsy. Dev Med Child Neurol. 2017;59(8):786-795. doi:10.1111/dmcn.13452
9. Barry MJ, VanSwearingen JM, Albright AL. Reliability and responsiveness of the Barry-Albright Dystonia Scale. Dev Med Child Neurol. 1999;41(6):404-411. doi:10.1017/S0012162299000870
10. Burke RE, Fahn S, Marsden CD, Bressman SB, Moskowitz C, Friedman J. Validity and reliability of a rating scale for the primary torsion dystonias. Neurology. 1985;35(1):73-77. doi:10.1212/WNL.35.1.73
11. Knights S, Datoo N, Kawamura A, et al. Further evaluation of the scoring, reliability, and validity of the hypertonia assessment tool (HAT). J Child Neurol. 2014;29(4):500-504. doi:10.1177/0883073813483903
12. Marsico P, Frontzek-Weps V, Balzer J, et al. Hypertonia assessment tool: reliability and validity in children with neuromotor disorders. J Child Neurol. 2017;32(1):132-138. doi:10.1177/0883073816671681
13. Comella CL, Leurgans S, Wuu J, et al. Rating scales for dystonia: a multicenter assessment. Mov Disord. 2003;18(3):303-312. doi:10.1002/mds.10377
14. Haley S, Coster W, Ludlow L, Haltiwanger, JT, and Andrellos PJ. Pediatric evaluation of disability inventory. Assessing Children’s Well-Being: a Handbook of Measures. 2003;11:13. https://psycnet.apa.org/doi/10.1037/t08316-000
15. Narayanan UG, Fehlings D, Weir S, Knights s, Kiran S and Campbell K. Initial development and validation of the Caregiver Priorities and Child Health Index of life with disabilities (CPCHILD). Dev Med Child Neurol. 2006;48(10):804-812. doi:10.1017/S0012162206001745
16. Thorley M, Lannin N, Cusick A, NOVAK I, BOYD R. Construct validity of the quality of upper extremity skills test for children with cerebral palsy. Dev Med Child Neurol. 2012;54(11):1037-1043. doi:10.1111/j.1469-8749.2012.04368.x
17. Turner-Stokes L. Goal attainment scaling in rehabilitation: a practical guide. Clin Rehabil. 2009;23(4):362-370. doi:10.1177/02692155 08101742
18. Law M, Baptiste S, McColl M, Opzoomer A, Polatajko H, Pollock N. The Canadian occupational performance measure: an outcome measure for occupational therapy. Can J Occup Ther. 1990;57(2):82-87. doi:10.1177/ 000841749005700207
19. Stewart K, Hutana G, Kentish M. Intrathecal baclofen therapy in paediatrics: a study protocol for an Australian multicentre, 10-year prospective audit. BMJ Open. 2017;7(6):e015863. doi:10.1136/bmjopen- 2017-015863
20. Bonouvrié LA, Becher JG, Vles JS, et al. Intrathecal baclofen treatment in dystonic cerebral palsy: a randomized clinical trial: the IDYS trial. BMC pediatrics. 2013;13(1):1-8. doi:10.1186/1471-2431-13-175
21. Eek MN, Olsson K, Lindh K, et al. Intrathecal baclofen in dyskinetic cerebral palsy: effects on function and activity. Dev Med Child Neurol. 2018;60(1):94-99. doi:10.1111/dmcn.13625
22. Elia AE, Bagella CF, Ferré F, Zorzi G, Calandrella D, Romito LM. Deep brain stimulation for dystonia due to cerebral palsy: a review. Eur J Paediatr Neurol. 2018;22(2):308-315. doi:10.1016/j.ejpn.2017.12.002
23. Masson R, Pagliano E, Baranello G. Efficacy of oral pharmacological treatments in dyskinetic cerebral palsy: a systematic review. Dev Med Child Neurol. 2017;59(12):1237-1248. doi:10.1111/dmcn.13532
24. Palisano R, Rosenbaum P, Walter S, Russell D, Wood E, Galuppi B. Development and reliability of a system to classify gross motor function in children with cerebral palsy. Dev Med Child Neurol. 1997;39(4):214-223. doi:10.1111/j.1469-8749.1997.tb07414.x
25. El Ö, Baydar M, Berk H, Peker Ö, Koşay C, Demiral Y. Interobserver reliability of the Turkish version of the expanded and revised gross motor function classification system. Dis Rehabil. 2012;34(12):1030-1033. doi:10.3109/09638288.2011.632466
26. Eliasson AC, Krumlinde-Sundholm L, Rösblad B, et al. The manual ability classification system (MACS) for children with cerebral palsy: scale development and evidence of validity and reliability. Dev Med Child Neurol. 2006;48(7):549-554. doi:10.1017/S0012162206001162
27. Akpinar P, Tezel CG, Eliasson A-C, cagasioglu A. Reliability and cross-cultural validation of the Turkish version of manual ability classification system (MACS) for children with cerebral palsy. Dis Rehabil. 2010;32(23):1910-1916. doi:10.3109/09638281003763796
28. Mutlu, A. Communication function classification system. Internet. 2019. Available from: https://www.communicationfunctionclassification.org
29. Kerem Günel M, Cemil Ö, Seyhan K, Arslan SS, Demir N, and Karaduman A. Yeme ve içme becerileri siniflandirma sisteminin Türkçe versiyonu: serebral palsili çocuklarda değerlendirici-içi güvenirliği ve diğer fonksiyonel siniflandirma sistemleri ile ilişkisi. Türk Fizyoter Rehabil Derg. 2020;31(3):218-224. doi:10.21653/tjpr.493150
30. Pennington L, Virella D, Mjoen T, et al. Development of The Viking Speech Scale to classify the speech of children with cerebral palsy. Res Develop Dis. 2013;34(10):3202-3210. doi:10.1016/j.ridd.2013.06.035
31. Karlsson P, Griffiths T, Clarke MT, et al. Stakeholder consensus for decision making in eye-gaze control technology for children, adolescents and adults with cerebral palsy service provision: findings from a Delphi study. BMC Neurol. 2021;21(1):1-24. doi:10.1186/s12883-021-02077-z
32. Rosenbaum P, Stewart D. The World Health Organization International Classification of Functioning, Disability, and Health: a model to guide clinical thinking, practice and research in the field of cerebral palsy. Semin Pediatr Neurol. 2004;11(1):5-10. doi:10.1016/j.spen.2004.01.002
33. Russell DJ, Rivard LM, Walter SD, et al. Using knowledge brokers to facilitate the uptake of pediatric measurement tools into clinical practice: a before-after intervention study. Implement Sci. 2010;5(1):1-17. doi:10.1186/1748-5908-5-92
34. Rosenbaum PL, Walter SD, Hanna SE, et al. Prognosis for gross motor function in cerebral palsy: creation of motor development curves. Jama. 2002;288(11):1357-1363. doi:10.1001/jama.288.11.1357
35. Morris C, Bartlett D. Gross motor function classification system: impact and utility. Dev Med Child Neurol. 2004;46(1):60-65. doi:10.1017/S0012162204000118
36. Organization WH. International Classification of Functioning, Disability, and Health: Children and Youth Version: ICF-CY. World Health Organization. 2007.
37. Neumann S, Romonath R. Application of the International Classification of Functioning, Disability, and Health-Children and Youth Version (ICF-CY) to cleft lip and palate. Cleft Palate Craniofac J. 2012;49(3):325-346. doi:10.1597/10-145
38. Pavone L, Burton J, Gaebler-Spira D. Dystonia in childhood: clinical and objective measures and functional implications. J Child Neurol. 2013;28(3):340-350. doi:10.1177/0883073812444312
39. Vanmechelen I, Bekteshi S, Bossier K, Feys H, Deklerck J, Monbaliu E. Presence and severity of dystonia and choreoathetosis overflow movements in participants with dyskinetic cerebral palsy and their relation with functional classification scales. Disabil Rehabil. 2020; 42(11):1548-1555. doi:10.1080/09638288.2018.1528637
40. Monbaliu E, De La Peña MG, Ortibus E, Molenaers G, Deklerck J, Feys H. Functional outcomes in children and young people with dyskinetic cerebral palsy. Dev Med Child Neurol. 2017;59(6):634-640. doi:10.1111/dmcn.13406
41. Monbaliu E, De Cock P, Mailleux L, Dan B, Feys H. The relationship of dystonia and choreoathetosis with activity, participation and quality of life in children and youth with dyskinetic cerebral palsy. Eur J Paediatr Neurol. 2017;21(2):327-335. doi:10.1016/j.ejpn.2016.09.003
42. Bonouvrie LA, Haberfehlner H, Becher JG, et al. Attainment of personal goals in the first year of intrathecal baclofen treatment in dyskinetic cerebral palsy: a prospective cohort study.Disabil Rehabil. 2023;45(8): 1315-1322. doi:10.1080/09638288.2022.2057600
43. Stewart K, Lewis J, Wallen M, Bear N, Harvey A. The Dyskinetic Cerebral Palsy Functional Impact Scale: development and validation of a new tool. Dev Med Child Neurol. 2021;63(12):1469-1475. doi:10.1111/dmcn.14960
44. Park BH, Park SH, Seo JH, Ko MH, Chung GH. Neuroradiological and neurophysiological characteristics of patients with dyskinetic cerebral palsy. Ann Rehabil Med. 2014;38(2):189-199. doi:10.5535/arm.2014.38. 2.189
45. Elze MC, Gimeno H, Tustin K, et al. Burke-Fahn-Marsden dystonia severity, Gross Motor, Manual Ability, and Communication Function Classification scales in childhood hyperkinetic movement disorders including cerebral palsy: a ‘Rosetta Stone’study. Dev Med Child Neurol. 2016;58(2):145-153. doi:10.1111/dmcn.12965
46. Gimeno H, Tustin K, Lumsden D, Ashkan K, Selway R, Lin JP. Evaluation of functional goal outcomes using the Canadian occupational performance measure (COPM) following deep brain stimulation (DBS) in childhood dystonia. Eur J Paediatr Neurol. 2014;18(3):308-316. doi:10.1016/j.ejpn. 2013.12.010
47. Laporta-Hoyos O, Fiori S, Pannek K, et al. Brain lesion scores obtained using a simple semi-quantitative scale from MR imaging are associated with motor function, communication and cognition in dyskinetic cerebral palsy. Neuroimage Clin. 2018;19:892-900. doi:10.1016/j.nicl. 2018.06.015
48. Laporta-Hoyos O, Pannek K, Ballester-Plané J, et al. White matter integrity in dyskinetic cerebral palsy: relationship with intelligence quotient and executive function. Neuroimage Clin. 2017;15:789-800. doi: 10.1016/j.nicl.2017.05.005
49. Cognition C. CANTAB. Cambridge Cognition. 1999.
50. Kongs S. K, Thompson L. L, Iverson G. L, and Heaton R. K. Wisconsin Card Sorting Test-, 64 Card Version: WCST-64. Lutz, FL: PAR. 2020.
51. Bonouvrié LA, Becher JG, Vles JS, et al. The effect of intrathecal baclofen in dyskinetic cerebral palsy: the IDYS trial. Ann Neurol. 2019;86(1):79-90. doi:10.1002/ana.25498
52. Dhondt E, Dan B, Plasschaert F, et al.Prevalence of cerebral palsy and factors associated with cerebral palsy subtype: a population-based study in Belgium. Eur J Paediatric Neurol. 2023;46:8-23. doi:10.1016/j.ejpn. 2023.06.003
53. Unes S, Tuncdemir M, Ozal C, et al. Relationship among four functional classification systems and parent interpredicted intelligence level in children with different clinical types of cerebral palsy. Development Neurorehabil. 2022;25(6):410-416. doi:10.1080/17518423.2022.2051629
54. Battini R, Sgandurra G, Menici V, et al. Movement disorders-childhood rating scale 4-18 revised in children with dyskinetic cerebral palsy. Eur J Phys Rehabil Med. 2020;56(3):272-278. doi:10.23736/S1973-9087.20. 06079-7
55. Peña-Casanova J, Quiñones-Ubeda S, Gramunt-Fombuena N, et al. Spanish Multicenter Normative Studies (NEURONORMA Project): norms for verbal fluency tests. Arch Clin Neuropsychol. 2009;24(4):395-411. doi:10.1093/arclin/acp042
56. Sun D, Wang Q, Hou M, et al. Clinical characteristics and functional status of children with different subtypes of dyskinetic cerebral palsy. Medicine (Baltimore). 2018;97(21):e10817. doi:10.1097/MD.0000000000010817
57. Ballester-Plané J, Laporta-Hoyos O, Macaya A, et al. Cognitive functioning in dyskinetic cerebral palsy: Its relation to motor function, communication and epilepsy. Eur J Paediatr Neurol. 2018;22(1):102-112. doi:10.1016/j.ejpn.2017.10.006
58. Ballester-Plané J, Schmidt R, Laporta-Hoyos O, et al. Whole-brain structural connectivity in dyskinetic cerebral palsy and its association with motor and cognitive function. Hum Brain Mapp. 2017;38(9):4594-4612. doi:10.1002/hbm.23686
59. Laporta-Hoyos O, Ballester-Plané J, Leiva D, et al. Executive function and general intellectual functioning in dyskinetic cerebral palsy: comparison with spastic cerebral palsy and typically developing controls. Eur J Paediatr Neurol. 2019;23(4):546-559. doi:10.1016/j.ejpn. 2019.05.010
60. Soleimani F, Vameghi R, Rassafiani M, Akbar FN, Nobakht Z. Cerebral palsy: motor types, gross motor function and associated disorders. 2011.
61. Bekteshi S, Vanmechelen I, Konings M, Ortibus E, Feys H, Monbaliu E. Clinical presentation of spasticity and passive range of motion deviations in dyskinetic cerebral palsy in relation to dystonia, choreoathetosis, and functional classification systems. Development Neurorehabil. 2021;24(3):205-213. doi:10.1080/17518423.2020.1858457
62. Butler EE, Ladd AL, LaMont LE, Rose J. Temporal-spatial parameters of the upper limb during a reach and grasp cycle for children. Gait Posture. 2010;32(3):301-306. doi:10.1016/j.gaitpost.2010.05.013
63. Carnahan KD, Arner M, Hägglund G. Association between gross motor function (GMFCS) and manual ability (MACS) in children with cerebral palsy. A population-based study of 359 children. BMC Musculoskelet Disord. 2007;8(1):1-7. doi:10.1186/1471-2474-8-50
64. Eliasson A-C, Krumlinde-Sundholm L, Rösblad B, et al. The manual ability classification system (MACS) for children with cerebral palsy: scale development and evidence of validity and reliability. Dev Med Child Neurol. 2006;48(7):549-554. doi:10.1017/S0012162206001162
65. Andersen GL, Irgens LM, Haagaas I, Skranes JS, Meberg AE, Vik T. Cerebral palsy in Norway: prevalence, subtypes and severity. Eur J Paediatr Neurol. 2008;12(1):4-13. doi:10.1016/j.ejpn.2007.05.001
66. Williams H, Pountney T. Effects of a static bicycling programme on the functional ability of young people with cerebral palsy who are non-ambulant. Dev Med Child Neurol. 2007;49(7):522-527. doi:10.1111/j.1469-8749.2007.00522.x
67. Zouvelou V, Yubero D, Apostolakopoulou L, et al. (2019). The genetic etiology in cerebral palsy mimics: the results from a Greek tertiary care center. Eur J Paediatr Neurol.2019;23(3):427-437. doi:10.1016/j.ejpn. 2019.02.001
68. Monbaliu E, Himmelmann K, Lin J-P, et al. Clinical presentation and management of dyskinetic cerebral palsy. Lancet Neurol. 2017;16(9):741-749. doi:10.1016/S1474-4422(17)30252-1
69. Préel M, Rackauskaite G, Larsen ML, et al. Children with dyskinetic cerebral palsy are severely affected as compared to bilateral spastic cerebral palsy. Acta Paediatr. 2019;108(10):1850-1856. doi:10.1111/apa. 14806
70. Westbom L, Hagglund G, Nordmark E. Cerebral palsy in a total population of 4-11 year olds in southern Sweden. Prevalence and distribution according to different CP classification systems. BMC Pediatr. 2007;7:41. doi:10.1186/1471-2431-7-41
71. Shevell MI, Dagenais L, Hall N, Consortium TR. The relationship of cerebral palsy subtype and functional motor impairment: a population-based study. Dev Med Child Neurol. 2009;51(11):872-877. doi:10.1111/j. 1469-8749.2009.03269.x
72. Sullivan E, Barnes D, Linton JL, et al. Relationships among functional outcome measures used for assessing children with ambulatory CP. Dev Med Child Neurol. 2007;49(5):338-344. doi:10.1111/j.1469-8749.2007.00338.x
73. Kerr C, McDowell B, McDonough S. The relationship between gross motor function and participation restriction in children with cerebral palsy: an exploratory analysis. Child Care Health Dev. 2007;33(1):22-27. doi:10.1111/j.1365-2214.2006.00634.x
74. Wong EC, Man DW. Gross motor function measure for children with cerebral palsy. Int J Rehabil Res. 2005;28(4):355-359. doi:10.1097/ 00004356-200512000-00009
75. Rabhi Y, Mrabet M, Fnaiech F. Intelligent control wheelchair using a new visual joystick. J Healthc Eng. 2018;2018:6083565. doi:10.1155/2018/ 6083565
76. Johansson D, Malmgren K, Murphy MA. Wearable sensors for clinical applications in epilepsy, Parkinson’s disease, and stroke: a mixed-methods systematic review. J Neurol. 2018;265(8):1740-1752. doi:10.1007/s00415-018-8786-y
77. Ahmadi M, O’Neil M, Fragala-Pinkham M, Lennon N, Trost S. Machine learning algorithms for activity recognition in ambulant children and adolescents with cerebral palsy. J Neuroeng Rehabil. 2018;15(1):1-9. doi: 10.1186/s12984-018-0456-x
78. Mitchell LE, Ziviani J, Oftedal S, Boyd RN. A systematic review of the clinimetric properties of measures of habitual physical activity in primary school aged children with cerebral palsy.Res Dev Disabil. 2013; 34(8):2419-2432. doi:10.1016/j.ridd.2013.04.013
79. Vanmechelen B, Bletsa M, Laenen L, et al. Discovery and genome characterization of three new Jeilongviruses, a lineage of paramyxoviruses characterized by their unique membrane proteins. BMC Genomics. 2018;19(1):617. doi:10.1186/s12864-018-4995-0
Volume 8, Issue 1, 2025
Page : 146-155
_Footer