JHSM

Journal of Health Sciences and Medicine (JHSM) is an unbiased, peer-reviewed, and open access international medical journal. The Journal publishes interesting clinical and experimental research conducted in all fields of medicine, interesting case reports, and clinical images, invited reviews, editorials, letters, comments, and related knowledge.

EndNote Style
Index
Original Article
Investigation of the effects of radionuclides used in nuclear medicine on organ dose and effective dose
Aims: The aim of this study is to investigate the effects of 68Ga, 18F, 89Sr, 13N, 133Xe and 131I radionuclide sources on organ doses and effective doses at different distances.
Methods: In this study, radionuclides commonly used in nuclear medicine applications were defined in the VMC dose calculation software to determine organ doses and effective dose values at varying distances. Additionally, the dose rates of each radionuclide were obtained using the Rad pro calculator online program.
Results: For different radionuclides at a 10 mCi dose, average dose rate measurements were conducted at varying distances. Specifically, 13N and 89Sr delivered the highest doses to certain organs, whereas 133Xe ve 131I resulted in lower doses. The effective doses at 100 cm for 68Ga, 18F, 89Sr, 13N, 133Xe and 131I sources were determined to be 2.72 µSv, 2.94 µSv, 2.50 µSv, 2.84 µSv, 0.91 µSv, and 1.16 µSv, respectively. The effective doses at 150 cm for 68Ga, 18F, 89Sr, 13N, 133Xe and 131I sources were determined to be 1.56 µSv, 1.49 µSv, 1.30 µSv, 1.46 µSv, 0.14 µSv, and 0.58 µSv, respectively. As the distance increased, radiation exposure levels decreased.
Conclusion: In this study, radiation exposure decreased significantly with distance from the source, demonstrating the importance of maintaining distance and applying ALARA principles in clinical settings. Furthermore, avoiding close proximity to the radiation source and utilizing appropriate shielding methods are crucial in minimizing radiation exposure.


1. Villoing D, Drozdovitch V, Simon SL, Kitahara CM, Linet MS, Melo DR. Estimated organ doses to patients from diagnostic nuclear medicine examinations over five decades: 1960-2010. Health Phys. 2017;113(6): 474-518. doi:10.1097/HP.0000000000000721
2. Şahmaran T. Evaluation of occupational radiation dose due to <sup>99m</sup>Tc and <sup>131</sup>I based examinations. J Health Sci Med. 2024;7(2):168-173. doi:10. 32322/jhsm.1418974
3. Salvatori M, Rizzo A, Rovera G, Indovina L, Schillaci O. Radiation dose in nuclear medicine: the hybrid imaging. Radiol Med. 2019;124(8):768-776. doi:10.1007/s11547-019-00989-y
4. Wibmer AG, Hricak H, Ulaner GA, Weber W. Trends in oncologic hybrid imaging. Eur J Hybrid Imaging. 2018;2(1):1. doi:10.1186/s41824-017-0019-6
5. Ali M, Alameen S, Bashir A, et al. Estimate of effective dose for adult patients from nuclear medicine examinations in Sudan. Radiat Physics Chemistry. 2022;200:110330. doi:10.1016/j.radphyschem.2022.110330
6. Teks&ouml;z S, M&uuml;ft&uuml;ler FZ. N&uuml;kleer tıpta kullanılan radyoizotoplar ve biyomedikal uygulamaları. Nuclear Med Seminar. 2019;5:10-14. doi:10. 4274/nts.galenos.2019.0002
7. Demir M. N&uuml;kleer tıp fiziği ve klinik uygulamaları. İ&Uuml;C &Uuml;niversite Yayınevi. 2020;80:112-126.
8. Behrendt CA, Rie&szlig; HC, Heidemann F, et al. Radiation dosage for percutaneous PAD treatment is different in cardiovascular disciplines: results from an eleven-year population-based registry in the metropolitan area of Hamburg. Eur J Vasc Endovasc Surg. 2017;53(2):215-222. doi:10.1016/j.ejvs.2016.11.001
9. Lee C. A review of organ dose calculation methods and tools for patients undergoing diagnostic nuclear medicine procedures. J Radiat Protect Res. 2024;49(1):1-8. doi:10.14407/jrpr.2023.00087
10. Işıkcı Nİ, Demir M, S&ouml;nmezoğlu K. Evaluation of annual occupational doses of technologists in diagnostic nuclear medicine. Cerrahpaşa Med J. 2022;46(3):226-229. doi:10.5152/cjm.2022.22007
11. Ho WY, Wong KK, Leung YL, Cheng KC, Ho FT. Radiation doses to staff in a nuclear medicine department. J Hong Kong College Radiol. 2002;5:24-28.
12. Chiesa C, De Sanctis V, Crippa F, et al. Radiation dose to technicians per nuclear medicine procedure: comparison between technetium-99m, gallium-67, and iodine-131 radiotracers and fluorine-18 fluorodeoxyglucose. Eur J Nucl Med. 1997;24(11):1380-1389. doi:10.1007/s 002590050164
13. Demirci S, Sezer S, Vural GU, Y&uuml;ksel M, G&ouml;kbulut V. Incidental focal <sup>18</sup>F-FDG uptake in colorectal locations on PET/CT for oncologic reasons: pathologic correlation with endoscopic findings. J Health Sci Med. 2024;8(1):109-114. doi:10.32322/jhsm.1594127
14. Peet DJ, Morton R, Hussein M, Alsafi K, Spyrou N. Radiation protection in fixed PET/CT facilities-design and operation. Br J Radiol. 2012; 85(1013):643-646. doi:10.1259/bjr/32969351
15. 15. Demir M, Demir B, Yaşar D, et al. Radiation doses to technologists working with 18F-FDG in a PET center with high patient capacity. Nukleonika. 2010;55:107-112.
16. Fathy M, Khalil MM, Elshemey WM, Mohamed HS. Occupational radiation dose to nuclear medicine staff due to Tc99m, F18-FDG PET and therapeutic I-131 based examinations. Radiat Prot Dosimetry. 2019; 186(4):443-451. doi:10.1093/rpd/ncz046
17. Şahmaran T, &Ccedil;oraplı H. Exploring occupational radiation exposure: insights from a decade-long study (2012-2021). J Radiat Res Appl Sci. 2024;17(1):100830. doi:10.1016/j.jrras.2024.100830
18. G&uuml;ltekin SS, Sahmaran T. Importance of bladder radioactivity for radiation safety in nuclear medicine. Mol Imaging Radionucl Ther. 2013; 22(3):94-97. doi:10.4274/Mirt.18480
19. Papadimitroulas P, Loudos G, Nikiforidis GC, Kagadis GC. A dose point kernel database using GATE Monte Carlo simulation toolkit for nuclear medicine applications: comparison with other Monte Carlo codes. Med Phys. 2012;39(8):5238-5247. doi:10.1118/1.4737096
20. Zhang S, Wang X, Gao X, et al. Radiopharmaceuticals and their applications in medicine. Signal Transduct Target Ther. 2025;10(1):1. doi: 10.1038/s41392-024-02041-6
21. International Commission on Radiological Protection, Recommendations of the International Commission on Radiological Protection, ICRP Publication 26 ~The International Commission on Radiological Protection, Oxford, 1977.
22. International Commission on Radiological Protection, 1990 Recommendations of the International Commission on Radiological Protection, ICRP Publication 60 ~The International Commission on Radiological Protection, New York, NY, 1991.
23. Yoder RC, Dauer LT, Balter S, et al. Dosimetry for the study of medical radiation workers with a focus on the mean absorbed dose to the lung, brain and other organs. Int J Radiat Biol. 2022;98(4):619-630. doi:10.1080/09553002.2018.1549756
24. Chauvin M, Borys D, Botta F, et al. OpenDose: open-access resource for nuclear medicine dosimetry. J Nucl Med. 2020;61(10):1514-1519. doi:10. 2967/jnumed.119.240366
25. Alameen S, Tamam N, Awadain S, Sulieman A, Alkhaldi L, Hmed AB. Radiobiological risks in terms of effective dose and organ dose from <sup>18</sup>F-FDG whole-body PET/CT procedures. Saudi J Biol Sci. 2021;28(10): 5947-5951. doi:10.1016/j.sjbs.2021.06.055
Volume 8, Issue 3, 2025
Page : 389-394
_Footer