1.
Rajaraman V. JohnMcCarthy-father of artificial intelligence. Resonance. 2014;19:198-207.
2.
Li JO, Liu H, Ting DSJ, et al. Digital technology, tele-medicine and artificial intelligence in ophthalmology: a global perspective. Prog Retin Eye Res. 2021;82:100900. doi:10.1016/j.preteyeres.2020.100900
3.
Mohammad-Rahimi H, Sohrabniya F, Ourang SA, et al. Artificial intelligence in endodontics: data preparation, clinical applications, ethical considerations, limitations, and future directions. Int Endod J. 2024;57(11):1566-1595. doi:10.1111/iej.14128
4.
O’Leary DE. Artificial intelligence and big data. IEEE Intell Syst. 2013; 28:96-99.
5.
Abesi F, Jamali AS, Zamani M. Accuracy of artificial intelligence in the detection and segmentation of oral and maxillofacial structures using cone-beam computed tomography images: a systematic review and meta-analysis. Pol J Radiol. 2023;88:e256-e263. doi:10.5114/pjr.2023. 127624
6.
Wong KF, Lam XY, Jiang Y, Yeung AWK, Lin Y. Artificial intelligence in orthodontics and orthognathic surgery: a bibliometric analysis of the 100 most-cited articles. Head Face Med. 2023;19(1):38. doi:10.1186/s13005-023-00383-0
7.
Yamashiro T, Ko CC. Artificial intelligence and machine learning in orthodontics. Orthod Craniofac Res. 2021;24(Suppl 2):3-5. doi:10.1111/ocr.12543
8.
Khanagar SB, Al-Ehaideb A, Vishwanathaiah S, et al. Scope and performance of artificial intelligence technology in orthodontic diagnosis, treatment planning, and clinical decision-making-a systematic review. J Dent Sci. 2021;16(1):482-492. doi:10.1016/j.jds.2020. 05.022
9.
Bouletreau P, Makaremi M, Ibrahim B, Louvrier A, Sigaux N. Artificial intelligence: applications in orthognathic surgery. J Stomatol Oral Maxillofac Surg. 2019;120(4):347-354. doi:10.1016/j.jormas.2019.06.001
10.
Stehrer R, Hingsammer L, Staudigl C, et al. Machine learning based prediction of perioperative blood loss in orthognathic surgery. J Craniomaxillofac Surg. 2019;47(11):1676-1681. doi:10.1016/j.jcms.2019. 08.005
11.
Chung M, Lee J, Song W, et al. Automatic registration between dental cone-beam CT and scanned surface via deep pose regression neural networks and clustered similarities. IEEE Trans Med Imaging. 2020; 39(12):3900-3909. doi:10.1109/TMI.2020.3007520
12.
Bajjad AA, Gupta S, Agarwal S, Pawar RA, Kothawade MU, Singh G. Use of artificial intelligence in determination of bone age of the healthy individuals: a scoping review. J World Fed Orthod. 2024;13(2):95-102. doi:10.1016/j.ejwf.2023.10.001
13.
Raza A, Munir K, Almutairi MS, Sehar R. Novel transfer learning-based deep features for diagnosis of Down syndrome in children using facial images. IEEE Access. 2024.
14.
Thompson DF, Walker CK. A descriptive and historical review of bibliometrics with applications to medical sciences. Pharmacotherapy. 2015;35(6):551-559. doi:10.1002/phar.1586
15.
Hamadallah HH, Alturki KN, Alsulaimani M, Othman A, Altamimi AO. Cleft lip and palate research trends in Saudi Arabia: a bibliometric analysis. Cureus. 2024;16(1):e52085. doi:10.7759/cureus.52085
16.
Tarazona-Alvarez B, Lucas-Dominguez R, Paredes-Gallardo V, Alonso-Arroyo A, Vidal-Infer A. A bibliometric analysis of scientific production in the field of lingual orthodontics. Head Face Med. 2019;15(1):23. doi: 10.1186/s13005-019-0207-7
17.
Ferrillo M, Nucci L, Gallo V, et al. Temporary anchorage devices in orthodontics: a bibliometric analysis of the 50 most-cited articles from 2012 to 2022. Angle Orthod. 2023;93(5):591-602. doi:10.2319/010923-18.1
18.
He X, Huang Z, Yang Y, et al. A bibliometric analysis of clear aligner treatment (CAT) from 2003 to 2023. Cureus. 2024;16(6):e63348. doi:10. 7759/cureus.63348
19.
Lam XY, Ren J, Yeung AWK, Lin Y. The 100 most-cited randomised controlled trials in orthodontics: a bibliometric study. Int Dent J. 2024; 74(4):868-875. doi:10.1016/j.identj.2023.12.010
20.
van Eck NJ, Waltman L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics. 2010;84(2):523-538. doi:10.1007/s11192-009-0146-3
21.
Aria M, Cuccurullo C. Bibliometrix: an R-tool for comprehensive science mapping analysis. J Informetr. 2017;11:959-975.
22.
Monill-González A, Rovira-Calatayud L, d’Oliveira NG, Ustrell-Torrent JM. Artificial intelligence in orthodontics: where are we now? A scoping review. Orthod Craniofac Res. 2021;24(Suppl 2):6-15. doi:10.1111/ocr. 12517
23.
Bichu YM, Hansa I, Bichu AY, Premjani P, Flores-Mir C, Vaid NR. Applications of artificial intelligence and machine learning in orthodontics: a scoping review. Prog Orthod. 2021;22(1):18. doi:10.1186/s40510-021-00361-9
24.
Liu J, Zhang C, Shan Z. Application of artificial intelligence in orthodontics: current state and future perspectives. Healthcare (Basel). 2023;11(20):2760. doi:10.3390/healthcare11202760
25.
Khanagar SB, Alfouzan K, Awawdeh M, Alkadi L, Albalawi F, Alghilan MA. Performance of artificial intelligence models designed for diagnosis, treatment planning, and predicting prognosis of orthognathic surgery (OGS): a scoping review. Appl Sci. 2022;12:5581.
26.
Snider V, Homsi K, Kusnoto B, et al. Clinical evaluation of artificial intelligence driven remote monitoring technology for assessment of patient oral hygiene during orthodontic treatment. Am J Orthod Dentofacial Orthop. 2024;165(5):586-592. doi:10.1016/j.ajodo.2023.12. 008
27.
Topol EJ. High-performance medicine: the convergence of human and artificial intelligence. Nat Med. 2019;25(1):44-56. doi:10.1038/s41591-018-0300-7
28.
Shan T, Tay FR, Gu L. Application of artificial intelligence in dentistry. J Dent Res. 2021;100(3):232-244. doi:10.1177/0022034520969115
29.
Litjens G, Kooi T, Bejnordi BE, et al. A survey on deep learning in medical image analysis. Med Image Anal. 2017;42:60-88. doi:10.1016/j.media.2017.07.005
30.
Ching T, Himmelstein DS, Beaulieu-Jones BK, et al. Opportunities and obstacles for deep learning in biology and medicine. J R Soc Interface. 2018;15(141):20170387. doi:10.1098/rsif.2017.0387
31.
Knox J. Artificial intelligence and education in China. Learn Media Technol. 2020;45:298-311.
32.
Spampinato C, Palazzo S, Giordano D, Aldinucci M, Leonardi R. Deep learning for automated skeletal bone age assessment in X-Ray images. Med Image Anal. 2017;36:41-51. doi:10.1016/j.media.2016.10.010
33.
Schwendicke F, Golla T, Dreher M, Krois J. Convolutional neural networks for dental image diagnostics: a scoping review. J Dent. 2019;91: 103226. doi:10.1016/j.jdent.2019.103226
34.
Payer C, Štern D, Bischof H, Urschler M. Integrating spatial configuration into heatmap regression based CNNs for landmark localization. Med Image Anal. 2019;54:207-219. doi:10.1016/j.media.2019.03.007
35.
Khanagar SB, Al-Ehaideb A, Maganur PC, et al. Developments, application, and performance of artificial intelligence in dentistry-a systematic review. J Dent Sci. 2021;16(1):508-522. doi:10.1016/j.jds.2020. 06.019
36.
Arık SÖ, Ibragimov B, Xing L. Fully automated quantitative cephalometry using convolutional neural networks. J Med Imaging (Bellingham). 2017;4(1):014501. doi:10.1117/1.JMI.4.1.014501
37.
Hung K, Montalvao C, Tanaka R, Kawai T, Bornstein MM. The use and performance of artificial intelligence applications in dental and maxillofacial radiology: a systematic review. Dentomaxillofac Radiol. 2020;49(1):20190107. doi:10.1259/dmfr.20190107
38.
Fourcade A, Khonsari RH. Deep learning in medical image analysis: a third eye for doctors. J Stomatol Oral Maxillofac Surg. 2019;120(4):279-288. doi:10.1016/j.jormas.2019.06.002
39.
Park JH, Hwang HW, Moon JH, et al. Automated identification of cephalometric landmarks: part 1-comparisons between the latest deep-learning methods YOLOV3 and SSD. Angle Orthod. 2019;89(6):903-909. doi:10.2319/022019-127.1
40.
Hwang HW, Park JH, Moon JH, et al. Automated identification of cephalometric landmarks: part 2-might it be better than human? Angle Orthod. 2020;90(1):69-76. doi:10.2319/022019-129.1
41.
Kunz F, Stellzig-Eisenhauer A, Zeman F, Boldt J. Artificial intelligence in orthodontics : Evaluation of a fully automated cephalometric analysis using a customized convolutional neural network. J Orofac Orthop. 2020;81(1):52-68. doi:10.1007/s00056-019-00203-8
42.
Xu X, Liu C, Zheng Y. 3D tooth segmentation and labeling using deep convolutional neural networks. IEEE Trans Vis Comput Graph. 2019; 25(7):2336-2348. doi:10.1109/TVCG.2018.2839685
43.
Xie X, Wang L, Wang A. Artificial neural network modeling for deciding if extractions are necessary prior to orthodontic treatment. Angle Orthod. 2010;80(2):262-266. doi:10.2319/111608-588.1
44.
Yu HJ, Cho SR, Kim MJ, Kim WH, Kim JW, Choi J. automated skeletal classification with lateral cephalometry based on artificial intelligence. J Dent Res. 2020;99(3):249-256. doi:10.1177/0022034520901715
45.
Cui Z, Fang Y, Mei L, et al. A fully automatic AI system for tooth and alveolar bone segmentation from cone-beam CT images. Nat Commun. 2022;13(1):2096. doi:10.1038/s41467-022-29637-2
46.
Lee JH, Yu HJ, Kim MJ, Kim JW, Choi J. Automated cephalometric landmark detection with confidence regions using Bayesian convolutional neural networks. BMC Oral Health. 2020;20(1):270. doi: 10.1186/s12903-020-01256-7
47.
Torosdagli N, Liberton DK, Verma P, Sincan M, Lee JS, Bagci U. Deep geodesic learning for segmentation and anatomical landmarking. IEEE Trans Med Imaging. 2019;38(4):919-931. doi:10.1109/TMI.2018.2875814
48.
Patcas R, Bernini DAJ, Volokitin A, Agustsson E, Rothe R, Timofte R. Applying artificial intelligence to assess the impact of orthognathic treatment on facial attractiveness and estimated age. Int J Oral Maxillofac Surg. 2019;48(1):77-83. doi:10.1016/j.ijom.2018.07.010
49.
Thurzo A, Strunga M, Urban R, Surovkova J, Afrashtehfar KI. Impact of artificial intelligence on dental education: a review and guide for curriculum update. Edu Sci. 2023;13(2):150. doi:10.3390/educsci13020 150
50.
Murata S, Lee C, Tanikawa C, Date S. Towards a fully automated diagnostic system for orthodontic treatment in dentistry. 2017 IEEE 13<sup>th</sup> Int Conf E-Sci (E-Science). 2017. doi:10.1109/eScience.2017.12
51.
Dallora AL, Anderberg P, Kvist O, Mendes E, Diaz Ruiz S, Sanmartin Berglund J. Bone age assessment with various machine learning techniques: a systematic literature review and meta-analysis. PLoS One. 2019;14(7):e0220242. doi:10.1371/journal.pone.0220242
52.
Lian C, Wang L, Wu TH, et al. Deep multi-scale mesh feature learning for automated labeling of raw dental surfaces from 3D intraoral scanners. IEEE Trans Med Imaging. 2020;39(7):2440-2450. doi:10.1109/TMI.2020.2971730
53.
Kök H, Acilar AM, İzgi MS. Usage and comparison of artificial intelligence algorithms for determination of growth and development by cervical vertebrae stages in orthodontics. Prog Orthod. 2019;20(1):41. doi:10.1186/s40510-019-0295-8
54.
Tian SK, Dai N, Bei Z, et al. Automatic classification and segmentation of teeth on 3D dental model using hierarchical deep learning networks. IEEE Access. 2019;7(1):84817-84828. doi:10.1109/ACCESS.2019.2924262
55.
Li P, Kong D, Tang T, et al. Orthodontic treatment planning based on artificial neural networks. Sci Rep. 2019;9(1):2037. doi:10.1038/s41598-018-38439-w
56.
Cui Z, Li C, Chen N, et al. TSegNet: An efficient and accurate tooth segmentation network on 3D dental model. Med Image Anal. 2021;69: 101949. doi:10.1016/j.media.2020.101949