JHSM

Journal of Health Sciences and Medicine (JHSM) is an unbiased, peer-reviewed, and open access international medical journal. The Journal publishes interesting clinical and experimental research conducted in all fields of medicine, interesting case reports, and clinical images, invited reviews, editorials, letters, comments, and related knowledge.

EndNote Style
Index
Original Article
Osajin is a promising candidate for sepsis-induced brain damage via suppression of the 8-OHdG/Bax/caspase-3 pathway in a rat model of sepsis
Aims: We examined the protective effect of the natural product osajin against sepsis-induced brain damage by targeting the 8-hydroxydeoxyguanosine (8-OHdG)/Bcl-2-associated×protein (Bax)/caspase-3 pathway in the brain tissue of septic rats.
Methods: Osajin was isolated from Maclura pomifera fruit, the structure was confirmed, and a rat model of brain damage was established by the cecal ligation and puncture (CLP) method. Osajin was administered to the animals with sepsis-associated brain damage at 150 and 300 mg/kg. Following euthanasia, histopathological examination, detection of 8-OHdG by immunohistochemistry, and the estimation of Bax and caspase-3 expression using an immunofluorescent technique in the brain tissue were performed.
Results: Histopathological examination revealed the presence of severe inflammation, marked degeneration, and necrosis in the brains of rats with sepsis. The results of immunohistochemical and immunofluorescent assays revealed that the CLP technique induced marked 8-OHdG, Bax, and caspase-3 expression in the brain tissues of septic rats compared with those in healthy rats. Osajin administration at a dose of 150 mg/kg (p<0.05) and 300 mg/kg (p=0.0022) reversed the histopathological changes and significantly ameliorated the increased 8-OHdG, Bax, and caspase-3 expression compared with that in septic rats.
Conclusion: The histopathological, immunohistochemical, and immunofluorescent evidence indicates that osajin can reverse brain damage caused by sepsis by inhibiting the 8-OHdG/Bax/caspase-3 pathway. Accordingly, this natural product represents a promising candidate for the management of brain damage in septic patients.


1. Fleischmann C, Scherag A, Adhikari NKJ, et al. Assessment of global incidence and mortality of hospital-treated sepsis current estimates and limitations. Am J Respir Crit Care Med. 2016;193(3):259-272. doi:10. 1164/rccm.201504-0781OC
2. Gofton TE, Young GB. Sepsis-associated encephalopathy. Nat Rev Neurol. 2012;8:557-566. doi:10.1038/nrneurol.2012.183
3. Gu M, Mei XL, Zhao YN. Sepsis and cerebral dysfunction: BBB damage, neuroinflammation, oxidative stress, apoptosis and autophagy as key mediators and the potential therapeutic approaches. Neurotox Res. 2021; 39:489-503. doi:10.1007/s12640-020-00270-5
4. Krzyzaniak K, Krion R, Szymczyk A, Stepniewska E, Sieminski M. Exploring neuroprotective agents for sepsis-associated encephalopathy: a comprehensive review. Int J Mol Sci. 2023;24(13):10780. doi:10.3390/ijms241310780
5. Sekino N, Selim M, Shehadah A. Sepsis-associated brain injury: underlying mechanisms and potential therapeutic strategies for acute and long-term cognitive impairments. J Neuroinflammation. 2022;19: 101. doi:10.1186/s12974-022-02464-4
6. Catarina AV, Branchini G, Bettoni L, De Oliveira JR, Nunes FB. Sepsis-associated encephalopathy: from pathophysiology to progress in experimental studies. Mol Neurobiol. 2021;58:2770-2779. doi:10.1007/s12035-021-02303-2
7. Pan S, Lv Z, Wang R, et al. Sepsis-induced brain dysfunction: pathogenesis, diagnosis, and treatment. Oxid Med Cell Longev. 2022; 2022:1328729. doi:10.1155/2022/1328729
8. Barto&scaron;&iacute;kov&aacute; L, Necas J, Such&yacute; V, et al. Protective effects of osajin in ischemia-reperfusion of laboratory rat kidney. Pharmazie. 2006;61(6): 552-555.
9. Florian T, Necas J, Bartosikova L, et al. Effects of prenylated isoflavones osajin and pomiferin in premedication on heart ischemia-reperfusion. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2006;150(1): 93-100. doi:10.5507/bp.2006.013
10. Cigsar G, Keles ON, Can S, et al. The protective effects of osajin on ischemia/reperfusion injury to rat ovaries: biochemical and histopathological evaluation. Kafkas Univ Vet Fak Derg. 2015;21(5):753-760. doi:10.9775/kvfd.2015.13387
11. Erol HS, Cakir A, Koc M, Yildirim S, Halici M. Anti-ulcerogenic effect of osajin on indomethacin-induced gastric damage in rats. Acta Vet Brno. 2020;89(4):391-400. doi:10.2754/avb202089040391
12. Alhilal M, Erol HS, Yildirim S, et al. Osajin from Maclura pomifera alleviates sepsis-induced liver injury in rats: biochemical, histopathological and immunohistochemical estimation. J Taibah Univ Sci. 2023;17(1): 2201250. doi:10.1080/16583655.2023.2201250
13. Alhilal M, Erol HS, Yildirim S, et al. Medicinal evaluation and molecular docking study of osajin as an anti-inflammatory, antioxidant, and antiapoptotic agent against sepsis-associated acute kidney injury in rats. Ren Fail. 2024;46(2):2379008. doi:10.1080/0886022X.2024.2379008
14. Moon HI. Effect of osajin and pomiferin on antidiabetic effects from normal and streptozotocin-induced diabetic rats. Nat Prod Commun. 2014;9(12):1723-1724. doi:10.1177/1934578X1400901215
15. Ba X, Boldogh lstvan. 8-oxoguanine DNA glycosylase 1: beyond repair of the oxidatively modified base lesions. Redox Biol. 2018;14:669-678. doi:10.1016/j.redox.2017.11.008
16. Bahar I, Elay G, Başkol G, Sungur M, Donmez-Altuntas H. Increased DNA damage and increased apoptosis and necrosis in patients with severe sepsis and septic shock. J Crit Care. 2018;43:271-275. doi:10.1016/j.jcrc.2017.09.035
17. Lorente L, Mart&iacute;n MM, Gonz&aacute;lez-Rivero AF, et al. Association between DNA and RNA oxidative damage and mortality in septic patients. J Crit Care. 2019;54:94-98. doi:10.1016/j.jcrc.2019.08.008
18. Dumbuya JS, Chen X, Du J, et al. Hydrogen-rich saline regulates NLRP3 inflammasome activation in sepsis-associated encephalopathy rat model. Int Immunopharmacol. 2023;123:110758. doi:10.1016/j.intimp. 2023.110758
19. Xu J, Lian L, Wu C, Wang X, Fu W, Xu L. Lead induces oxidative stress, DNA damage and alteration of p53, Bax and Bcl-2 expressions in mice. Food Chem Toxicol. 2008;46(5):1488-1494. doi:10.1016/j.fct.2007.12.016
20. O&rsquo;Brien MA, Kirby R. Apoptosis: a review of pro-apoptotic and anti-apoptotic pathways and dysregulation in disease. J Vet Emerg Crit Care. 2008;18(6):572-585. doi:10.1111/j.1476-4431.2008.00363.x
21. Westphal D, Dewson G, Czabotar PE, Kluck RM. Molecular biology of Bax and Bak activation and action. Biochim Biophys Acta Mol Cell Res. 2011;1813(4):521-531. doi:10.1016/j.bbamcr.2010.12.019
22. Gyawali B, Ramakrishna K, Dhamoon AS. Sepsis: the evolution in definition, pathophysiology, and management. SAGE Open Med. 2019;7: 1-13. doi:10.1177/2050312119835043
23. Dunkern TR, Fritz G, Kaina B. Ultraviolet light-induced DNA damage triggers apoptosis in nucleotide excision repair-deficient cells via Bcl-2 decline and caspase-3/-8 activation. Oncogene. 2001;20(42):6026-6038. doi:10.1038/sj.onc.1204754
24. Fang J, Lian Y, Xie K, Cai S, Wen P. Epigenetic modulation of neuronal apoptosis and cognitive functions in sepsis-associated encephalopathy. Neurol Sci. 2014;35:283-288. doi:10.1007/s10072-013-1508-4
25. Deniz GY, Geyikoglu F, Altun S. The regulatory effects of pomiferin dietary on nickel-induced hepatic injury in Sprague-Dawley rats; action mechanisms and signaling pathways. Toxicol Mech Methods. 2024;34(5): 484-494. doi:10.1080/15376516.2023.2301667
Volume 8, Issue 2, 2025
Page : 191-196
_Footer